Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Hong-Jun Zhu, Dan-Dan Wang, Guang-Liang Song, Jin-Tang Wang and Ke-Le Wang*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: zhuhj@njut.edu.cn

Key indicators

Single-crystal X-ray study T = 296 K Mean σ (C–C) = 0.005 Å R factor = 0.054 wR factor = 0.151 Data-to-parameter ratio = 12.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, C₂₀H₁₆N₂O₂, was synthesized from the reaction of 2,5-dibenzoylterephthalamide and sodium hypochlorite solution. The asymmetric unit contains one halfmolecule, the molecule being centrosymmetric. Intra- and intermolecular N-H···O hydrogen bonds are highly effective in forming a two-dimensional layer structure.

2,5-Dibenzoyl-1,4-phenylenediamine

Received 31 May 2005 Accepted 15 June 2005 Online 24 June 2005

Comment

2,5-Dibenzoyl-1,4-phenylenediamine, (I), is a significant material in the synthesis of extended lattice compounds with a centrosymmetric system. It is also an important compound in preparation of electron-transport materials (Tonzola et al., 2003). The synthesis of 2,5-dibenzoyl-1,4-phenylenediamine has been reported (Imai et al., 1975).

The molecular structure of (I) is shown in Fig. 1 and selected bond lengths and angles are given in Table 1. The asymmetric unit contains one half molecule, the whole molecule being centrosymmetric.

The crystal packing is stabilized by intra- and intermolecular $N-H \cdots O$ hydrogen bonds (Table 2), forming a two-dimensional layer structure (Fig. 2).

Experimental

Sodium hypochlorite solution (10 ml, 5.25%) was added with stirring to a mixture of 2,5-dibenzoylterephthalamide (1 g, 2.7 mmol) and potassium hydroxide solution (30 ml, 10.45%) cooled in an ice-water bath for half an hour. The mixture was stirred for an additional hour at 343-353 K and the precipitate began to separate. The resulting precipitate was filtered off, washed with hot water and dried under reduced pressure. The crude product was obtained by slow evaporation of a solution in benzene (yield: 0.6 g, 71%; m.p. 492 K).

Crystal data

$C_{20}H_{16}N_2O_2$	Mo $K\alpha$ radiation
$M_r = 316.35$	Cell parameters from 25
Orthorhombic, Pcab	reflections
a = 7.4651 (15) Å	$\theta = 9-12^{\circ}$
b = 13.0034 (16) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 15.9759 (18) Å	T = 296 (2) K
V = 1550.8 (4) Å ³	Prism, brown
Z = 4	$0.3 \times 0.3 \times 0.1 \text{ mm}$
$D_r = 1.355 \text{ Mg m}^{-3}$	

© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

organic papers

Data collection

Enraf–Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (*XPREP* in *SHELXTL*; Bruker, 2000) $T_{min} = 0.974, T_{max} = 0.991$ 1519 measured reflections 1519 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.151$ S = 1.021519 reflections 118 parameters H atoms treated by a mixture of independent and constrained refinement

 Table 1

 Selected geometric parameters (Å, °).

O-C4	1.231 (4)	N-C1	1.393 (4)
C10-C4	1.478 (5)	C3-C4	1.491 (4)
C2-C1-N	120.1 (3)	$C1^{i}-C3-C4$	120.7 (3)
C1-C2-C3	122.4 (3)	C10-C4-C3	120.9 (3)

614 reflections with $I > 2\sigma(I)$

every 200 reflections

intensity decay: none

 $w = 1/[\sigma^2(F_o^2) + (0.0432P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

Extinction correction: SHELXL97

Extinction coefficient: 0.0047 (19)

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

 $\theta_{\rm max} = 26.0^{\circ}$

 $h = 0 \rightarrow 9$

 $k = 0 \rightarrow 16$

 $l = 0 \rightarrow 19$ 3 standard reflections

Symmetry code: (i) -x, -y, -z.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\overline{N-H1\cdots O^{i}}$ $N-H1\cdots O^{ii}$	0.87(4) 0.87(4)	2.25 (4) 2.61 (4)	2.855 (5) 3.220 (5)	127 (3) 128 (3)
0 (1 ()		N1 1.		

Symmetry codes: (i) -x, -y, -z; (ii) $\frac{1}{2} - x, -\frac{1}{2} + y, -z$.

Atoms H1 and H3 were located in a difference synthesis and refined freely [N-H = 0.87 (4)-0.95 (5) Å]. The remaining H atoms were positioned geometrically (C-H = 0.93 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}$ (parent atom).

Data collection: *CAD-4 Software* (Enraf–Nonius,1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2001); software used to prepare material for publication: *SHELXTL*.

Figure 1

A drawing of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines represent hydrogen bonds. [Symmetry code for unlabelled atoms: -x, -y, -z.]

Figure 2

The two-dimensional layer structure of (I). Dashed lines indicate hydrogen bonds.

The authors thank the Center of Test and Analysis, Nanjing University, for support.

References

Bruker (2000). XSCANS and SHELXTL (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.

- Enraf-Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. (1995). XCAD4. University of Marburg, Germany.
- Imai, Y., Johnson, E. F., Katto, T., Kurihara, M. & Stille, J. K. (1975). J. Polym. Sci. 13, 2233–2249.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tonzola, C. J., Alam, M. M., Kaminsky, W. & Jenekhe, S. A. (2003). J. Am. Chem. Soc. 125, 13548–13558.