Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Jun Zhu, Dan-Dan Wang, Guang-Liang Song, Jin-Tang Wang and Ke-Le Wang*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: zhuhj@njut.edu.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.054$
$w R$ factor $=0.151$
Data-to-parameter ratio $=12.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2,5-Dibenzoyl-1,4-phenylenediamine

The title compound, $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$, was synthesized from the reaction of 2,5 -dibenzoylterephthalamide and sodium hypochlorite solution. The asymmetric unit contains one halfmolecule, the molecule being centrosymmetric. Intra- and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are highly effective in forming a two-dimensional layer structure.

Comment

2,5-Dibenzoyl-1,4-phenylenediamine, (I), is a significant material in the synthesis of extended lattice compounds with a centrosymmetric system. It is also an important compound in preparation of electron-transport materials (Tonzola et al., 2003). The synthesis of 2,5-dibenzoyl-1,4-phenylenediamine has been reported (Imai et al., 1975).

(I)

The molecular structure of (I) is shown in Fig. 1 and selected bond lengths and angles are given in Table 1. The asymmetric unit contains one half molecule, the whole molecule being centrosymmetric.

The crystal packing is stabilized by intra- and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), forming a two-dimensional layer structure (Fig. 2).

Experimental

Sodium hypochlorite solution ($10 \mathrm{ml}, 5.25 \%$) was added with stirring to a mixture of 2,5 -dibenzoylterephthalamide ($1 \mathrm{~g}, 2.7 \mathrm{mmol}$) and potassium hydroxide solution ($30 \mathrm{ml}, 10.45 \%$) cooled in an ice-water bath for half an hour. The mixture was stirred for an additional hour at $343-353 \mathrm{~K}$ and the precipitate began to separate. The resulting precipitate was filtered off, washed with hot water and dried under reduced pressure. The crude product was obtained by slow evaporation of a solution in benzene (yield: $0.6 \mathrm{~g}, 71 \%$; m.p. 492 K).

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$	Mo $K \alpha$ radiation $M_{r}=316.35$
Orthorhombic, $P_{\text {cab }}$ Cell parameters from 25	
$a=7.4651(15) \AA$	reflections
$b=13.00344(16) \AA$	$\theta=9-12^{\circ}$
$c=15.959(18) \AA$	$\mu=0.09 \mathrm{~mm}^{-1}$
$V=1550.8(4) \AA \AA^{3}$	$T=296(2) \mathrm{K}$
$Z=4$	Prism, brown
$D_{x}=1.355 \mathrm{Mg} \mathrm{m}^{-3}$	$0.3 \times 0.3 \times 0.1 \mathrm{~mm}$

Received 31 May 2005 Accepted 15 June 2005 Online 24 June 2005

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (XPREP in SHELXTL; Bruker, 2000)
$T_{\text {min }}=0.974, T_{\text {max }}=0.991$
1519 measured reflections 1519 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.151$
$S=1.02$
1519 reflections
118 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{O}-\mathrm{C} 4$	$1.231(4)$	$\mathrm{N}-\mathrm{C} 1$	$1.393(4)$
$\mathrm{C} 10-\mathrm{C} 4$	$1.478(5)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.491(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N}$	$120.1(3)$	$\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 3-\mathrm{C} 4$	$120.7(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$122.4(3)$	$\mathrm{C} 10-\mathrm{C} 4-\mathrm{C} 3$	$120.9(3)$

Symmetry code: (i) $-x,-y,-z$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N}-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.87(4)$	$2.25(4)$	$2.855(5)$	$127(3)$
$\mathrm{N}-\mathrm{H} 1 \cdots \mathrm{O}^{\text {ii }}$	$0.87(4)$	$2.61(4)$	$3.220(5)$	128 (3)

Symmetry codes: (i) $-x,-y,-z$; (ii) $\frac{1}{2}-x,-\frac{1}{2}+y,-z$.

Atoms H1 and H3 were located in a difference synthesis and refined freely $[\mathrm{N}-\mathrm{H}=0.87(4)-0.95(5) \AA]$. The remaining H atoms
were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and refined as riding, refined freely $[\mathrm{N}-\mathrm{H}=0.87(4)-0.95(5) \AA]$. The remaining H atoms
were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Data collection: CAD-4 Software (Enraf-Nonius,1989); cell
refinement: CAD-4 Software; data reduction: XCAD4 (Harms, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997);
program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997);
program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL.

614 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=26.0^{\circ}$
$h=0 \rightarrow 9$
$k=0 \rightarrow 16$
$l=0 \rightarrow 19$
3 standard reflections every 200 reflections intensity decay: none

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0432 P)^{2}\right]
$$

$$
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e} \AA_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0047 (19)

Figure 1
A drawing of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines represent hydrogen bonds. [Symmetry code for unlabelled atoms: $-x,-y,-z$.]

Figure 2
The two-dimensional layer structure of (I). Dashed lines indicate hydrogen bonds.

The authors thank the Center of Test and Analysis, Nanjing University, for support.

References

Bruker (2000). XSCANS and SHELXTL (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. (1995). XCAD4. University of Marburg, Germany.
Imai, Y., Johnson, E. F., Katto, T., Kurihara, M. \& Stille, J. K. (1975). J. Polym. Sci. 13, 2233-2249.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tonzola, C. J., Alam, M. M., Kaminsky, W. \& Jenekhe, S. A. (2003). J. Am. Chem. Soc. 125, 13548-13558.

