Acta Crystallographica Section E

# **Structure Reports Online**

ISSN 1600-5368

## 2,5-Dibenzoyl-1,4-phenylenediamine

### Hong-Jun Zhu, Dan-Dan Wang, Guang-Liang Song, Jin-Tang Wang and Ke-Le Wang\*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: zhuhj@njut.edu.cn

#### **Key indicators**

Single-crystal X-ray study T = 296 KMean  $\sigma(\text{C-C}) = 0.005 \text{ Å}$  R factor = 0.054 wR factor = 0.151Data-to-parameter ratio = 12.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound,  $C_{20}H_{16}N_2O_2$ , was synthesized from the reaction of 2,5-dibenzoylterephthalamide and sodium hypochlorite solution. The asymmetric unit contains one half-molecule, the molecule being centrosymmetric. Intra- and intermolecular  $N-H\cdots O$  hydrogen bonds are highly effective in forming a two-dimensional layer structure.

Received 31 May 2005 Accepted 15 June 2005 Online 24 June 2005

#### Comment

2,5-Dibenzoyl-1,4-phenylenediamine, (I), is a significant material in the synthesis of extended lattice compounds with a centrosymmetric system. It is also an important compound in preparation of electron-transport materials (Tonzola *et al.*, 2003). The synthesis of 2,5-dibenzoyl-1,4-phenylenediamine has been reported (Imai *et al.*, 1975).

$$\begin{array}{c|c}
O & NH_2 \\
C & C \\
H_2N & O
\end{array}$$

The molecular structure of (I) is shown in Fig. 1 and selected bond lengths and angles are given in Table 1. The asymmetric unit contains one half molecule, the whole molecule being centrosymmetric.

The crystal packing is stabilized by intra- and intermolecular  $N-H\cdots O$  hydrogen bonds (Table 2), forming a two-dimensional layer structure (Fig. 2).

#### **Experimental**

Sodium hypochlorite solution (10 ml, 5.25%) was added with stirring to a mixture of 2,5-dibenzoylterephthalamide (1 g, 2.7 mmol) and potassium hydroxide solution (30 ml, 10.45%) cooled in an ice-water bath for half an hour. The mixture was stirred for an additional hour at 343–353 K and the precipitate began to separate. The resulting precipitate was filtered off, washed with hot water and dried under reduced pressure. The crude product was obtained by slow evaporation of a solution in benzene (yield: 0.6 g, 71%; m.p. 492 K).

Crystal data

 $C_{20}H_{16}N_2O_2$   $M_r = 316.35$ Orthorhombic, Pcab a = 7.4651 (15) Å b = 13.0034 (16) Å c = 15.9759 (18) Å V = 1550.8 (4) Å<sup>3</sup> Z = 4 $D_x = 1.355$  Mg m<sup>-3</sup> Mo  $K\alpha$  radiation Cell parameters from 25 reflections  $\theta = 9-12^{\circ}$  $\mu = 0.09 \text{ mm}^{-1}$ T = 296 (2) K Prism, brown  $0.3 \times 0.3 \times 0.1 \text{ mm}$ 

 $\odot$  2005 International Union of Crystallography Printed in Great Britain – all rights reserved

### organic papers

#### Data collection

Enraf–Nonius CAD-4 diffractometer  $\omega/2\theta$  scans Absorption correction:  $\psi$  scan (XPREP in SHELXTL; Bruker, 2000)  $T_{\min} = 0.974, T_{\max} = 0.991$  1519 measured reflections 1519 independent reflections

614 reflections with  $I > 2\sigma(I)$   $\theta_{\rm max} = 26.0^{\circ}$   $h = 0 \rightarrow 9$   $k = 0 \rightarrow 16$   $l = 0 \rightarrow 19$ 3 standard reflections every 200 reflections intensity decay: none

#### Refinement

Refinement on  $F^2$   $R[F^2 > 2\sigma(F^2)] = 0.054$   $wR(F^2) = 0.151$  S = 1.021519 reflections 118 parameters H atoms treated by a mixture of independent and constrained refinement

$$\begin{split} w &= 1/[\sigma^2(F_{\rm o}^2) + (0.0432P)^2] \\ \text{where } P &= (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} &= 0.001 \\ \Delta\rho_{\rm max} &= 0.19 \ {\rm e} \ {\rm \mathring{A}}^{-3} \\ \Delta\rho_{\rm min} &= -0.18 \ {\rm e} \ {\rm \mathring{A}}^{-3} \\ \text{Extinction correction: } SHELXL97 \\ \text{Extinction coefficient: } 0.0047 \ (19) \end{split}$$

**Table 1** Selected geometric parameters (Å, °).

| O-C4     | 1.231 (4) | N-C1                   | 1.393 (4) |
|----------|-----------|------------------------|-----------|
| C10-C4   | 1.478 (5) | C3-C4                  | 1.491 (4) |
| C2-C1-N  | 120.1 (3) | C1 <sup>i</sup> -C3-C4 | 120.7 (3) |
| C1-C2-C3 | 122.4 (3) | C10-C4-C3              | 120.9 (3) |

Symmetry code: (i) -x, -y, -z.

**Table 2** Hydrogen-bond geometry (Å, °).

| $D-H\cdots A$                          | D-H      | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D$ $ H$ $\cdot \cdot \cdot A$ |
|----------------------------------------|----------|-------------------------|-------------------------|--------------------------------|
| $N-H1\cdots O^{i}$ $N-H1\cdots O^{ii}$ | 0.87 (4) | 2.25 (4)                | 2.855 (5)               | 127 (3)                        |
|                                        | 0.87 (4) | 2.61 (4)                | 3.220 (5)               | 128 (3)                        |

Symmetry codes: (i) -x, -y, -z; (ii)  $\frac{1}{2} - x, -\frac{1}{2} + y, -z$ .

Atoms H1 and H3 were located in a difference synthesis and refined freely [N-H = 0.87 (4)-0.95 (5) Å]. The remaining H atoms were positioned geometrically (C-H = 0.93 Å) and refined as riding, with  $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm parent\ atom})$ .

Data collection: *CAD-4 Software* (Enraf–Nonius,1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2001); software used to prepare material for publication: *SHELXTL*.



Figure 1

A drawing of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines represent hydrogen bonds. [Symmetry code for unlabelled atoms: -x, -y, -z.]

Figure 2

The two-dimensional layer structure of (I). Dashed lines indicate hydrogen bonds.

The authors thank the Center of Test and Analysis, Nanjing University, for support.

#### References

Bruker (2000). XSCANS and SHELXTL (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.

Enraf<br/>–Nonius (1989).  $\it CAD-4$   $\it Software$ . Version 5.0. Enraf<br/>–Nonius, Delft, The Netherlands.

Harms, K. (1995). XCAD4. University of Marburg, Germany.

Imai, Y., Johnson, E. F., Katto, T., Kurihara, M. & Stille, J. K. (1975). J. Polym. Sci. 13, 2233–2249.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Tonzola, C. J., Alam, M. M., Kaminsky, W. & Jenekhe, S. A. (2003). J. Am. Chem. Soc. 125, 13548–13558.